Extensions 1→N→G→Q→1 with N=C32xDic3 and Q=C4

Direct product G=NxQ with N=C32xDic3 and Q=C4
dρLabelID
Dic3xC3xC12144Dic3xC3xC12432,471

Semidirect products G=N:Q with N=C32xDic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C32xDic3):1C4 = Dic3xC32:C4φ: C4/C1C4 ⊆ Out C32xDic3488-(C3^2xDic3):1C4432,567
(C32xDic3):2C4 = C33:(C4:C4)φ: C4/C1C4 ⊆ Out C32xDic3488-(C3^2xDic3):2C4432,569
(C32xDic3):3C4 = C62.80D6φ: C4/C2C2 ⊆ Out C32xDic3144(C3^2xDic3):3C4432,452
(C32xDic3):4C4 = C3xDic3:Dic3φ: C4/C2C2 ⊆ Out C32xDic348(C3^2xDic3):4C4432,428
(C32xDic3):5C4 = C3xDic32φ: C4/C2C2 ⊆ Out C32xDic348(C3^2xDic3):5C4432,425
(C32xDic3):6C4 = Dic3xC3:Dic3φ: C4/C2C2 ⊆ Out C32xDic3144(C3^2xDic3):6C4432,448
(C32xDic3):7C4 = C32xDic3:C4φ: C4/C2C2 ⊆ Out C32xDic3144(C3^2xDic3):7C4432,472

Non-split extensions G=N.Q with N=C32xDic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C32xDic3).1C4 = C33:5(C2xC8)φ: C4/C1C4 ⊆ Out C32xDic3248+(C3^2xDic3).1C4432,571
(C32xDic3).2C4 = C33:2M4(2)φ: C4/C1C4 ⊆ Out C32xDic3248+(C3^2xDic3).2C4432,573
(C32xDic3).3C4 = C33:7M4(2)φ: C4/C2C2 ⊆ Out C32xDic3144(C3^2xDic3).3C4432,433
(C32xDic3).4C4 = C3xD6.Dic3φ: C4/C2C2 ⊆ Out C32xDic3484(C3^2xDic3).4C4432,416
(C32xDic3).5C4 = C3xS3xC3:C8φ: C4/C2C2 ⊆ Out C32xDic3484(C3^2xDic3).5C4432,414
(C32xDic3).6C4 = S3xC32:4C8φ: C4/C2C2 ⊆ Out C32xDic3144(C3^2xDic3).6C4432,430
(C32xDic3).7C4 = C32xC8:S3φ: C4/C2C2 ⊆ Out C32xDic3144(C3^2xDic3).7C4432,465
(C32xDic3).8C4 = S3xC3xC24φ: trivial image144(C3^2xDic3).8C4432,464

׿
x
:
Z
F
o
wr
Q
<